Woodsonics Experimental Procedure

Repeat the following experiment for Four transducers pairs:

- 250kHz; use large Alba device as Tx
- 100kHz; remove perspex front face
- 50kHz; typically used as transmitters not convinced will work efficiently as Rx
- 38kHz; use large device as Tx

Excitation procedure:

- Use Arbitrary Function Generator (AFG) and key in 1-10 cycle tone burst and approximate transducer frequency
- Set AFG to lowest amplitude
- Use T-piece BNC adaptor and 1:100 (or 1:10) scope probe to measure power amplifier output drive voltage. Do not exceed 200V in any case.
- Connect AFG to ENI power amplifier
- Slowly increase amplitude through AFG
- Tune excitation frequency in each experiment to obtain maximum received amplitude.
- Take care not to exceed power amplifier power rating. Determine if window function on the AFG is necessary.

Basic experimental setup:

- Pitch-catch setup
- Use couplant
- Identify appropriate pre-amplifier to use in reception one of the pulser-receiver units? Problem may be low frequency transducers. Ask Walter for advice. Record the serial number of equipment used and it's settings
- Carefully align transducers, then tune frequency to maximise SNR
- Use 1-, 5-, 10-, cycle excitation and measure through transmission response record peak voltage amplitude on reception

Question: how to 'normalise' each experiment to determine relative attenuation/frequency characteristic?

Possible solution: use same transducer pairs on a test (glass or steel) block (this may need to be quite large due to low frequency and long pulse lengthⁱⁱ). Measure the drive voltage and receive voltage to work out insertion loss in 'clean' material. Note, we could work out pulse-echo response in clean material to determine attenuation at a specific frequency. Then relate insertion loss in wood to insertion loss in test block. Need to be careful about thickness of each test material and attenuation usually expressed in dB/cm. – COMMENTS.

2nd Phase experimental setup (same basic configuration as above):

- Soak wood overnight
- Repeat experiments

3rd Phase experimental setup (same basic configuration as above):

- Align 'best' transducer pair on wood sample, ensuring rigidly held in place
- Introduce drill hole from side starting at small diameter, say 1mm, and increase until defect signal appears in received signal

4th Phase experimental setup

- Try 3 different transducer combinations: 250kHz Tx and 100kHz Rx; 100kHz Tx and 50kHz Rx; 50kHz Tx and 38kHz Rx

Q: What is "best" transducer pair? Possible answer: one that yields shortest received pulse while keeping good SNR (back wall at least 40dB above noise floor?)

Q: Might be worthwhile to think about building our own +- 300V, 1MHz programmable coded pulse exciter? Shouldn't' be too expensive, for example, http://uk.farnell.com/nxp/phc2300-118/mosfet-np-ch-300v-sot96-1/dp/1758128RL and could be driven with a simple microcontroller (eg. from the STM Discovery series...), power limited from low-side of the voltage multiplier. - this could also be outsourced.

ⁱ triangular-raise window may reduce power draw from the power amplifier, otherwise not recommended - Jurek.

ii for 38kHz and 6800m/s wave speed, pitch-catch, 10cycles+20% reserve, no repeated propagation, the block size must be not smaller than 0.7metre:

http://www.wolframalpha.com/input/?i=%286300m%2Fs+%2F++38kHz+*+%2810+%2B+2%29++%2F+3%29
The same assuming 1 cycle drive + 300% reserve yields 0.25m . We should be able to find 0.7m long glass rods or steel rods.